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Abstract 
In a previous paper [Phys. Rev. A 65,  032721 (2002)l we re-examined a model describing the 

structure of the low-energy Ps-H resonances as being due to quasi-bound states of the positron in 

the perturbed Coulomb potential of the H- ion appearing in the closed, rearranged channel. In 

particular, we wished to understand why the lowest p-state resonance was so far away from the 

lowest quasi-bound ( 2 p )  state. We found that the lowest resonance actually corresponds to the 

first excited [3p] state, while the lowest state is not recognizable as a resonance. In the present 

work we repeat our analysis, but this time for the lowest d state. We find that the lowest 134 state 

does correspond to a resonance shifted moderately. 

PACS numbers: 34.50.-~,36.10.Dr 
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There has been much recent theoretical interest in the positronium-hydrogen [Ps-H] scat- 

tering system [l], and special interest has focused on the properties of elastic scattering 

_resnnances t h a t  h a x  been predicted by a variety of theoretical techniques 12, 31. In par- 

ticular, the model of resonances due to hydrogenic bound states in the re-arranged [eS-H-] 

channel predicts the existence of an infinite sequence of resonances in all angular-momentum 

states 141. We may expect these resonances to lie fairly close to the levels of hydrogen al- 

though perturbed by the non-Coulomb parts of the negative hydrogen ion's potential. In 

addition, the L-degeneracy of the hydrogen levels should be broken by this short-range repul- 

sive potential so as to raise the low-L states more than the higher ones, since they are more 

penetrating. A simple S-wave calculation based on this idea was carried out long ago [4], 

including the coupling between the hydrogenic bound states and the scattering continuum. 

The lowest S-state was not expected to correspond to a resonance, since there is a single 

,%*wave bound state in Ps-H, but the 2s state did generate a resonance that agreed well 

with other calculations [2]. Based on this success, it was assumed that the correspondence 

'between hydrogenic bound states and resonances would carry over trivially to higher values 

of the angular momentum. 

Therefore it was a surprise when the lowest P and D resonances were found 131 to be 

radically shifted from their expected positions, based on the hydrogenic model. That was 

our motivation for re-examining that model, including P-states in our analysis. We were 

again surprised to find [5] that the 2p state was broadened out of all recognition, and that 

it was actually the 3p state that produced the lowest P resonance, at a position in good 

agreement with the results of Ref.131. Since we now know that the lowest state in both S- and 

P-waves is ineffective a t  producing scattering resonances, we wish to find out whether this 

situation is true for higher-L waves too. In this Brief Report we outline the corresponding 

calculation for L=2. In this case, we find that the lowest state does in fact correspond to 

the lowest resonance, in contrast to the lower-L cases. 

The method described in Ref.[4, 51 is essentially a two-state approximation: 

where 
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and the ground states of Ps and H atoms have the following forms: 

The function F ( 8 )  represents the Ps-H scattering, both atoms being unexcited, while G(5) 

is the wave function of the positron bound in a d-state to the negative hydrogen ion. The 

system is in the singlet electronic spin state (corresponding to the symmetry of the ionic 

bound state @ ( T I ,  .a)) and is explicitly antisymmetrized. 

In Ref. [5] the details of the variational derivation of an integro-differential equation for 

F ( 2 )  are described. This has the following form: 

Two major simplifications are then made: First, the integral kernel coming from the ex- 

change of the two electrons is replaced by an effective separable form 

and second, the hydrogen ion wave function is replaced by its simplest approximation 

The first step is to omit the closed-channel function G(Z) which removes the optical 

potential terms from Eq. (4) and solve the resulting static-exchange equation: 

where X = 87rb/5 and F(2) = u(R)P2(fi - 2)/R. This equation has the following solution: 

U(R) = j ( k ~ )  - t an7  c ( ~ R )  + e-cuRC C n ~ n - 2  , (8) 1 4 i n=O 

where 

(9) 
3 3 a  3a2 + k2 a(a2 + k2)  ( a 2  + k 2 ) 2  

, c3 = 8k2 ' , c4 = 2k2 2k2 
c,=,,, c,=- c2= 

k2 ' 

and 
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The effective range formula takes the form 

5 (a2 + k 2 ) 6  + ( k 2  - ’) [3a8 + 28a6k2 + 178a4k4 + 28a2k6 + 3k8] . k cot 77 = - (10) 64X 256a5 

By fitting this expression to the L = 2 phase shifts calculated in the static-exchange approx- 

imation Ref.161 we find a best fit for a = 1.30244 and X = -1.02029, and we will assume 

that the separable form of the exchange kernel shown in Eq.(5) is appropriate even when 

we add the correlated terms coming from the closed-channel hydrogen-ion parts of the wave 

function of Eq.(l). 

The virtual bound state wave function G(Z) can consist of one or more D-state eigen- 

functions of the differential equation 

where U ( z )  is the potential due to the simple form of @ shown in Eq.(6): 

The two lowest eigenvalues are E3d = -0.1097Ry and ~ 4 d  = -0.0618Ry, which lie very close 

to the unperturbed hydrogenic values of -1/9 and -1/16. We are interested in finding how 

close to these positions the corresponding scattering resonances lie. (Note that the second 

of these lies above the inelastic threshold of the Ps atom at E = -3/8 - EH- + EH + Eps = 

-0.0695.) 

We follow the same procedure in calculating the separable potentials V N d ( 2 )  as for the 

earIier S- and P-wave calculations of Ref. [5J: 

Here A N d  = EH- + ENd - E H  - Eps - k 2 / 2 ,  so that for the lowest resonance &d = 0.3348 - 
k 2 / 2 .  Once the potentials have been evaluated the numerical solution of the scattering 

equation by the noniterative method is quite straightforward. 

The potential Vh7d(zl) is the result of an integration over the two remaining independent 

Jacobi coordinates describing the system, pi and 72 .  But there are additional coordinates 

involved in the integration, especially the argument of the Legendre polynomial giving the 

angular dependence of the bound state function G(rc’). We expect the angular dependence 
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of the optical potential to involve only D-states of the variable p R  = fil ~ 2 ,  so the variables 

in the integrand must be appropriately transformed. (The integration over dT2 is trivial.) 
+ 

Since 2 = I?: + $/2 we can write 

where we define ,up = b1 . 2  and p = 
and we can write the second in terms of 

. k,. The first term in Eq.(14) has the desired form, 

In our previous work on P-states, at this point we could neglect the +dependent terms 

which would vanish after integration over d4. But in the present case we must construct 

P2(2 e 2 )  which is quadratic in its argument, and the quadratic &dependent terms do not 

vanish after integration. After some algebra we obtain the transformed expression 

Finally, we can now write the potential explicitly in terms of a double integral: 

Here we have used the definitions 

which comes obviously from Eq. (16), and 

Everything has now been rewritten in terms of the three variables R,p, and p,  keeping 

in mind that [z, T ]  = JR2 + 2/4 k Rpp. In practice we separate VNd(d) into two parts, 

one independent of energy and one proportional to  AN^, carry out the double integrals 

numerically for a range of values of R, and then fit the results smoothly by interpolation. 

The resulting potentials are then used in the scattering equation (4 ) ,  after expansion in 

partial waves, to compute the D-wave phase shift as  a function of energy. 

The results are not as surprising as were those presented in Ref.[5]. In Fig.1 we show the 

phase shift when only the 3d closed-channel state is included in G(5). In this case a single, 
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FIG. 1: Ps-H D-wave phase shifts. The squares are the result when only the 3d state is included, 

and the crosses are the result when the 4d state is added. The curves are best-fit analytical 

functions of the standard form [Eq.(18)]. The two horizontal lines are at 7r and 27r, respectively, to 

guide the eye. 

fairly narrow resonant feature is seen, and when it is fitted with the standard resonance 

formula 
r 

[?iER - E ) ]  
v(E)  = A + BE + arctan 

we find the results shown in Table I. (The energies there are the Ps-H scattering energies 

k2/2, not energies measured relative to H-). You can see that the resonance energy obtained 

this way is very close to the result in [4], although the width is too large. 

Also in Fig1 we plot the phase shift when we add the 4d state. Here we find two 

resonances, which lie quite close together. The results of a two-term fit are also shown in 

Table I, although the higher one is perhaps not too significant since it lies above the Ps 

i 
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TABLE I: D-wave resonances in various approximations. The energies ENd do not include coupling 

to 6116: ccjniinuuiii. The h ~ e s t  reSciiaiiCe is l&&C 1 and the s e ~ ~ ~ c !  is 2. $ 7  

1 Method 1 ~s scattering energy (ev) I Width (eV) 

E3d 

E4d 

4.555 

5.207 

4.708 

4.729 

4.710zt0.0027 

5.253 

0.394 

0.327 

0.0925 f 0.0054 

0.266 

inelastic threshold of 0.375 Ry and has not been previously calculated. With the inclusion 

of this second state the position of the first resonance rises slightly and is in somewhat poorer 

agreement with Ref.[4], while its narrower width is a slight improvement. 

We conclude from these calculations that the D-wave resonances behave almost exactly 

as we would have expected before the problem with the P-wave scattering arose. That is, 

coupling with the continuum shifts the position of the lowest resonance, but only by a modest 

amount. There is no sign of the phenomenon that startled us in the P-wave work, where 

the lowest potential resonance disappeared due to that coupling. We now feel confident 

that calculations of higher-L resonances (which we do not intend to carry out) will continue 

to  act normally, although their positions above the inelastic threshold would necessitate 

multi-channel formulations. 
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